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The underlying theory of vector sequence extrapolation methods for
linear and nonlinear problems is examined. It is shown that nonlinearity
limits savings in total number of iterations 1o 50% for strongly non-
linear problems when linear-based extrapelation methods are used. In
support of this conclusion, convergence behaviors of solutions of
Burgers’ equation and an interacting boundary layer problem are
examined, Supporting evidence from the work of previous researchers
is also presented. A possible means of circumiventing this limitation by
including nonlinear terms in the extrapolation is suggested. Results of
Lhis methed for a scalar imodel probiem and a solution to Burgers® equa-
tion are given, showing that the 50 % limitation can be circumvented,
€' 1994 Academic Press, inc.

INTRODUCTION

The differenced lTorm of the governing equations of fluid
dynamics can usually be written

B xxy +/i,-i-.\‘,+ &=0, (1)

where the x;'s are the variables deseribing velocity, pressure,
temperature, etc. To solve (1), many times a point-iterative
scheme of the form

S = g1 )
is used. Such schemes are ofien convergent but they tend to
converge slowly. Acceleration schemes which increase this
convergence rate come in many varieties. The standard
methods of successive telaxation can show significant
improvement in convergence rate at very little computa-
tional cxpense. Due to the problem dependence of the
relaxation parameter, however, often times the savings are
not maximized. Recently, optimal relaxation schemes such
as the distributed minimal residual method of Lee and
Dulikravich {9] have been developed that tailor relaxation
parameters to the problem. This method is of the same form
as the reduced rank extrapolation method of Eddy [6] and
Mesina {11], described in detail by Sidi [14]. Thus, the
optimal relaxation methods can be shown to be a subclass
of vector sequence extrapolation techniques. .
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Vector sequences are formed by the repeated application
of (2) to some initial vector, x{°, The extrapolation techni-
ques are used to predict the converged result of the sequence
based on a relatively small number of iterations. In this
paper, we examing the underlying rationale of these
methods, the implications of applying them to nonlinear
problems, and some sample results to illustrate the effective-
ness and limitations that can be expected. In particular, we
will show that individual acceleration schemes can only be
expected by yicld 50% savings for strongly nonlinear
iterative problems. Such savings have been observed by
researchers attempting to accelerate strongly nonlinear
systems. (Sec, e.g., Sidi and Celestina [13] and Cheung,
Cheer, Hafez, and Flores [4]). Although this does not
eliminate the usefulness of such schemes, this result suggests
that the greatest savings in strongly nonlinear problems will
be gained by improving the convergence rates of the base
algorithm if linear-based extrapolation methods are used.
We will also suggest a nonlinear extrapolation method that
may allow for greater than 50% savings in convergence rate
without significantly greater computationai eflort.

LINEAR THEORY

Vector sequence extrapolation schemes operate on the
series of residual vectors

{n)y _ (n+1) i)
=X, - X (3)

to predict the converged solution vector, x!™. To seec how
this is accomplished, it is necessary 1o understand how
linear mappings converge or diverge. The point iterative
scheme (2), in lincar form, is

XM= A 4 b, (4)

where the components of 4, and 4, are constant and
repeated indices imply summation. The residual of the
resulting vector sequence is then

IJE-JI)':A,]H;"_”- (5)
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So, the residual at any iteration level, n, 1s simply

ul = A%ul, (6}
where the initial residual is a function of the initial vector of
the sequence. It is important to note the notational dif-
ference between a superscript enclosed in parentheses and
one that is not. A superscript in parentheses denotes the
value of the quantity at that iteration, A superscript alone
denotes raising the quantity to that power, or in the case of
matrices, multiplying the matrix by itself that many times,
If A;is a diagonalizable matrix, then (6) can be written

M = T,-j/lka“ugo', {7)
where the matrix T, is the matrix of right eigenvectors, Sy

is the inverse of T, and A is the diagonal matrix of the
cigenvalues of A !

A i=j
A=< g
v {0 [ #J. ®)
These eigenvalues are ordered such that |42
[4s] = --- = |4y|. Therefore, from (7), the residual can also

be written in the form

u=FE A+ Ends+ -, (2)
or, with a summation convention,

uf_rf} — Efjjv_:"s

(10)
where the components of E, are constants depending on the
eigenvectors of 4; and the initial vector. Since we have
chosen to order the eigenvalues by decreasing magnitude, as
the number of iterations increases, the number of eigen-
values that significantly contribute to the convergence
behavior decreases. In fact, in the limit of n — o0, the
residual will behave like

u"=FE, A {11)
Logarithmic plots of this residual will become straight lines
in the limit as the iteration number becomes large. Figure 1
illustrates this type of convergence. This is a fairly common
convergence mode for both linear and nonlinear systems.
This log-linear limit behavior is actually one of three
main possibilities and correspond to the behavior for 4, real
with the modulus of all other eigenvalues less than |4,].
It is also possible that the second eigenvalue could be the
negation of the real first eigenvalue, Ai,= —4,. In this
case, the residual will alternate between two straight lines,
resulting in a saw-toothed behavior, as iilustrated by Fig. 2.
Finally, 2, and 4, could form a complex conjugate pair:

A=A e*”, (12)
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FIG. 1. Log-linear convergence.
in which case, the residuals will converge like
U™ =e;|4,|" cos(gn + w,). (13)

Such convergence is of a scailoped form where the upper
bound is a straight line of slope log |4,|. Figure 3 depicts
this type of behavior. The residuals plotted in these three
figures are those obtained by iterating on three different
3x 3 linear systems in a Gauss—Seidel fashion. The coef-
ficients were adjusted in each case so as to yield the various
behaviors. It is interesting to note that the complicated
behaviors seen in nonlinear systems of very high order can
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FIG, 2. Sawtooth convergence.
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FIG. 3. Scalloped convergence.

also be seen in such simple low-order linear systems. Other
behaviors, such as that arising from two sets of complex
cigenvalues of equal magnitude but differing phase are
possible. However, these are less likely to occur in practice.

EXTRAPOLATION METHODS

By noting that at least some point iterative schemes
converge like (10) with A, real, it is possible to predict the
converged value of the vector sequence to first order. This is
done by noting that (10) implies that

utm

lim —— =/, (14)
"— o0 u:‘l”fl]
and that
i A
A= =Sy s)
m=1 _“'1
By substitution, we obtain the very simple relation:
(x(.ufl])2_x{.n)xl:nfl]
X = :n—l) ln; ,cn—Z)' (16)
2x} —x™—x

L4

This is the acceleration method described by Black and
Rothmayer [2]. It is also essentially the method developed
as long ago as 1926 by Aitken [1] and in 1948 by
Lyusternik [10].

Such first-order extrapolations do significantly accelerate
solutions but they can only be applied in the log-linear
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convergence region. Furthermore, they are not valid without
modification for saw-toothed or scalloped convergence. In
order to make the extrapolation effective earlier as well as to
account for cases where more than one eigenvalue
contributes, higher order extrapolation techniques are
needed. Several different types of such methods exist.
Among these arc the minimal polynomial extrapolation of
Cabay and Jackson [37], reduced rank extrapolation of Eddy
[6] and MeSina [11] (both described in detail by Smith,
Ford, and Sidi [15]), and the distributed residual method
described by Lee and Dulikravich [9]. In a different vein
are the “dominant eigenvalue annihilation methods” such as
that described by Jespersen and Bunning [8]. Although
they differ in details, the overall intent is the same for all of
them. All these methods hope to improve the quality of the
predicted solution by fitting the residual behavior to some
truncated form of (10). To illustrate, the basic methods of
one of these schemes, minimal polynomial extrapolation
{MPE), will be outlined.

MPE works by assuming that the converged value of the
solution can be found from a weighted average of some
finite number, %, of consecutive x,’s. In other words,

k

.

xiP =% gy xlrtd)
i=1

(17)

where

k

> v=1

j=1

(18)

The weighting coefficients, y;, are found by solving the
overdetermined set of equations,

cou::n)_l_clugn+l)+ s +Ck71u£'n+k—ll= _Ckuf_r:+k), (19)

and choosing ¢, = 1. The other coefficients are then found
by a linear least squares method such as that of Sidi [14].
If the residual can be assumed to converge like (10)
truncated to the first k eigenvalues, then the ¢,;’s and the y,’s
are related by

e (20)

Z:r =1 Cm'

NONLINEAR SYSTEMS

By going to higher orders, it should be possible to
extrapolate to the final solution much earlier. Indeed, for
linear systerns this is the case. For mstance, Sidi [14] was
able to reduce iteration numbers by a factor of 10 for a liner
systemn of dimension 1000 using an extrapolation of order
10. In fact, if the computations could be performed with
infinite precision, it would be possible to extrapoiate to the
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exact solution by letting the order of the fit, £, equal the
dimension of the system, N. Of course, N +2 iterations
would have to pass before there was enough data to conduct
the fit. And at that point, it would be necessary to invert a
N x N matrix to find the weighting coefficients, which is as
difficult a problem as the original. However, relatively low
order fits (k=10-15) give astonishing savings for linear
systems. It is therefore natural to attempt to apply these
methods to nonlinear problems such as those of fluid
dynamics. This has been done Sidi and Celestina {13] and
Lee and Dulikravich [9], for example. Here the results have
been good but not as remarkable. In this section, we offer an
extrapolation of why that may be.

First, it is necessary to understand why extrapolation
techniques developed for linear systems would be con-
sidered appropriate for nonlinear ones. If the nonlinear
operator, g, of {2) is expanded about its stationary point,
the value of x!"* " can be written

XV =b 4+ A x4 By 4 {21)
which, when x" is sufficiently close to x!*’, would appear
to be approximated by

(n+1) _ i (n)
b =b;+ A;x)".

(22)

Thus, for solutions near the converged value, linear
behavior is expected to result, Yet, some degree of
approximation is inherent in assuming a form like (22). The
amount of error incurred by approximating in this way can
be assessed by examining what (21) implies for the
calcuiated eigenvalues.

The mapping (21} implies that the residuals behave like

) v 1) (M) _ (1= D) n—1)
W= AT+ B dxx —x" U )y (23)
or

() _ 4qln), {n—1)
u} VA,.I. u; .

(24)

where the residual transition matrix, Afj” ', is defined to be

A = A+ B 2xy ) a4

p (25)
Aiternatively, the residual transition matrix can be defined
recursively:

A =AY+ Bulu Vb )+ L (26)
This is the form the extrapolation actuaily sees. It is
interesting to compare this form with the linear form, (5).
Such comparison reveals the essential difference between

linear and nonlinear vector sequences. While the residual
transition matrix in lincar systems is not dependent on
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previous residuals, in the nonlinear system this history is
retained. The errors that arise in applying linear-based
models to nonlinear problems stem from this essential
difference.

An estimate of the error incurred by assuming linearity
can be found by comparing the eigenvalues of 4y and
Al U 1f the residual transition matrix is written in similar
form,

AGTI=T NG S EY, (27)
and each of the matrices is assumed to be perturbed by some
small amount, ¢< 1, then the transition matrix can be
shown to be
) __ gln—=1 n
AP = APV LeCi 4o (28)

Since B, is O(1), in general, and the residuals converge like
|4;]" in the limit, comparison of (26) and (28) yieids
e~ O([A"). This implies that the stepwise behavior of the
eigenvalues of the residual transition matrix can be
expanded in the form

A=A Ln) |4+ -, (29)
where {;{n) are unknown functions of the iteration level that
depend on the higher derivatives of the mapping. I the
original nonlinear mapping is quadratic, these functions are
constant. For higher order mappings, they are complicated
functions of n.

What does this imply for vector sequence extrapolation?
Such methods rely on the assumption that, for a kth-order
fit, the residuals decay like

W =E A+ Ep A4 o 4+ O Ay l™) (30)
We now see, however, that the first term will actually
behave like

APy ~ 2+ 0l (n) A+ -

~ A A AT (31)
So, in general, a nonlinear algorithm can only be considered
linear to the extent that the eigenvalues considered are
greater in magnitude than |4,|% This presents a means of
classifying how nonlinear a system is. The order of non-
linearity can be defined as the number of eigenvalues of the
system that are greater than the square of the magnitude of
the dominant eigenvalue.

The order of nonlinearity is independent of the strength of
nonlinearity, While the order of nonlinearity determines
the asymptotic behavior as the iteration approaches
convergence, strength determines the degree to which
nonlinearity affects the solution early in the iteration.
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Throughout the derivation above, we assumed that the
effect of the nonlinear terms was OQ(1). If the nonlinear terms
were instead quite small with respect to the lingar ones,
perhaps due to a fortuitous choice of initial conditions, we
would see that while the nonlincar behavior described
above would hold in the limit, early in the iteration the con-
vergence would in fact appear linear to the extrapolation
techniques. The conclusion is that while nonlinear effects
exist for all nonlinear systems, they may be negligible for
those problems where the nonlinearity is weak. An example
of this is the low Mach number Euler solutions of Lee and
Dulikravich [9]. Here the convergence of the extrapolated
sequence is faster than would be predicted above. However,
for the case in question, the problem is essentially a linear
potential flow problem. For general nonlinear systems, it
may be assumed that the nonlinearity is not weak, else a
linear approximation to the solution would suffice.

As an example of the nonlinear effects discussed thus far,
we examine the numerical solution of a steady form of
Burger’s equation

(32)

W =V

on the interval [0, 1] with boundary conditions »(0)=0
and o(1) = 1. This equation has an analytical solution given

by
ax
v{x)=otan (7),

where the constant, = 1.306542374, satisfies the boundary
conditions. This equation was solved on a 101-point grid in
Gauss-Seidel fashion:

(33)

Sy
i+1

(m+1)
i—1

2 4x

U{_n)

r+1) 4 o in+l)
i —2u" +v

i~1 (n+1)
Ax?

=Uf

(34)

To verify the conclusions above, it is desirable to study the
convergence of this numerical scheme for a range of domi-
nant eigenvalues. To do this, the grid could be refined or the
boundary conditions could be changed. Both of these alter-
natives would change the basic character of the solution,
however. Changing the boundary conditions changes the
final solution while refining the grid changes the relative
strength of the nonlinearity, It was decided to affect changes
in the eigenvalues by using successive relaxation at the end
of each grid sweep. The relaxation took the form:

" =g (2" + (1 —w) x{7. (35)
This relaxation was done only to alter the eigenvalues,
not to stabilize or accelerate the calculation. The altered
eigenvalues of the relaxed form are

Llwy=wl,+ (1 —o), (36)
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FIG. 4. Comparison of residual and eigenvalue residual of the
nonlinear Burger's equation with w=1.

where ii’s are the eigenvalues for w = 1. At the end of each
sweep, the dominant eigenvalue as predicted by MPE was
calculated. If the nonlinear theory is correct, then stepwise
changes in this dominant eigenvalue should behave like

A AT D= 400 A (37)
So the slope of the log plot of the change in 4, should be the
same as that of the residual itself in the limit of large » if the
system is first-order nonlinear. Figure 4 shows that this is
the case for a relaxation parameter of unity. Figure 5 shows
the result for a range of relaxation parameters. The quantity
(dfdn)(log A4,) is the asymptotic slope of 44, on a log plot.
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FIG. 5. Residual slope versus eigenvalue residual slope of the
nonlinear Burger's equation for a range of @’s.
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The eigenvalue itself was found from a first-order MPE
calculation. The slope was found from linear least squares of
the change in A, for the last 500 iterations before machine
accuracy was reached. A slope of unity in a plot like Fig. 5
indicates first-order nonlincarity from (37). The problem
appears to be first-order nonlingar throughout the range of
the dominant eigenvalues considered. The implication is
that extrapolations of greater than first-order would not
yield significantly better results.

To verify that this results from the nonlinearity of the
problem, a purely linear version of the same problem was
solved numerically. In this constructed linear problem, the
differenced form of the derivative on the right-hand side of
(34} was replaced by the exacr value found from differen-
tiating (33). Eigenvalues were again varied by applying the
relaxation formula, (35). Since the linear and nonlinear
schemes have the same converged value, it was expected
that the asymptotic slopes (log 4,) would match. However,
since the residual of 4, should go like (4,/4,)", the eigen-
value residual slope of the purely linear problems should be
steeper than that of the nonlinear one. (This will be true
even though in the limit the solutions are identicall) It is
clear from Fig. 6 that this is so for a relaxation parameter of
unity. Indeed, Fig. 7 shows that this is the case for the entire
range of eigenvalues considered. These results appear to
verify that the theory of nonlinear systems outlined above is
correct.

RESULTS FROM NONLINEAR FLUIDS PROBLEMS

Examples from the Literature

1f this theory is correct, attempts to apply vector sequence
extrapolation methods should show roughly 50 % savings
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FIG. 6. Comparison of residual and eigenvalue residual of the linear
form of Burger's equation with ar = 1.
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FIG. 7. Residual slope versus eigenvalue residual slope of the linear
form of Burger's equation for a range of w's.

in run times when applied to problems of fluid mechanics.
The DMR results of Lee and Dulikravich [9] agree with
this prediction when the problem considered was strongly
nonlinear. For the weakly nonlinear case, the savings were
more on the order of 60 % . The results of Sidi and Celestina
F137] show strong agreement with this prediction as well.
Figure 9 is a residual plot obtained by them for a 10th-order
extrapolation of a solution of the Navier-Stokes equations,
The straight line is added to show the slope predicted by the
A3 limitation where A, was found by graphical analysis

107% §

L;

1078 §

10—12 :

0 500 1000
Iteration number

FIG. 8. Unextrapolated residuals of the Navier-Stokes solution of
Sidi and Celestina.
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FIG. 9. Extrapolated residuals of the Navier—Stokes solution of Sidi
and Celestina.

of the unaccelerated results (Fig. 8). The accelerated
convergence rate agrees quite favorably with the predicted
mean rate.

Interacting Boundary Layer Results

To further demonstrate the effect of nonlinearity on the
acceleration of nonlinear fluid flow calculations, the results
from an interacting boundary layer code (described by
Black and Rothmayer [2]) were studied. Minimal polyno-
mial extrapolation was applied to study the effect of
nonlinearity.

The boundary layer calculations proceed by solving the
viscous equations subject to outer boundary conditions that
allow for strong viscous-inviscid interaction. The boundary
layer equations are written in a baseline coordinate system
that would ideally coincide with the displacement surface of
the boundary layer. The similarity transformation of
Gortler [7] is applied:

g“:r o) ds,
’ (38)

Hep
V2

In these coordinates, & and V are the velocities in the
tangential and normal directions, u,, is the inviscid surface
speed past the baseline, and f, is the baseline pressure
gradient parameter defined as

_ E dueﬂ

Bo_ueo d

(39)
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In addition, the true pressure gradient parameter is defined
as

=y, (40)
“3’0 dé

where u, is the actual surface speed at the edge of the

boundary layer. The continuity, tangential momentum, and

normal momentum equations are (as shown by Davis and
Werle [57])

F,,,,—VF,,+FV,,+(1—ﬁO}F2+ﬁl=0, (42)
and
B, =0. (43)

The equations are subject to inner boundary conditions of
no-slip past surfaces and symmetry in wakes. The outer
boundary conditions are obtained by taking the limit
n — oo of the continuity and tangential momentum equa-
tions and the V-matching condition {see Van Dyke [ 16]).

The inner and outer flows are coupled in the manner of
Davis and Werle [5] using the bluff body formulation of
Rothmayer [12] to model the outer flow, which for
symmetric cases reduces to

= (44)

He _ Re= 12 oo (d1dE ) [u (6% — 1)] du
T + s L E—u ’
where 8* is the scaled boundary layer displacement thick-
ness and r is the distance from the baseline curve to the body
of interest measured inward. This integral is integrated
by parts, discretized, and coupled with the V-matching
condition to provide for strong interaction (see Black and
Rothmayer [2]).

The governing equations are linearized, differenced in
second-order accurate form, and solved by repeated
sweeping in the £-direction. At each streamwise grid line,
the equations form block-tridiagonal systems that are
solved by the Thomas algorithm. Separated regions are
stabilized by applying the FLARE approximation.

The main case considered in the present study was the
laminar flow past a 6 % thickness to chord ratio NACAQOxx
symmetric airfoil, using the x-axis as the baseline curve. The
grid contained 120 points in the streamwise direction (80 on
the airfoil) and 200 in the normal direction. Reynolds
number was 10° based on chord length. Figure 10 shows
the converged, unextrapolated solution in terms of wall
shear on the body and wake centerline velocity in the wake.
This configuration results in a separation bubble of
approximately 35% chord in extent, centered at the trailing
edge.



NONLINEAR CONVERGENCE ACCELERATION

0.3

Re = 10°

0.2 — - )
07 08 09 10 L1 12

Streamwise location, x

FIG. 10. Converged wall shear and centerline wake velocity for the
NACA0006 airfoil.

The solution was then rerun using MPE to predict the
converged value of displacement thickness. Extrapolated
displacement thickness distributions were calculated after
each iteration. The order of these extrapolations was varied
from one to five. Figure 11 is an example of the results, In
this plot, the change in the extrapolated value of é* at the
trailing edge from one iteration to the next is shown for the
first-order fit. The noise in the result makes it difficuit to see
the trends. Figure 12 compares a least squares exponential
fit with the predicted mean line. Note the close match
between the slope of the curve fit and the A7 line, implying
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FIG. 11. Base and extrapolated residuals for the NACAQO06 airfoil

using first-order extrapolation.
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FIG. 12. Extrapolated residuals with curve fit for the first-order
extrapolation.

that this case is first-order nonlinear, If this is true, the con-
vergence rates of higher order extrapolations should be the
same as that of the first-order fit. Figure 13 shows the fitted
curve results for a second-order extrapolation, while Fig. 14
shows the result for a fifth-order extrapolation. Recall that
in all cases extrapolated vaiues were calculated after every
iteration as soon as enough data was availabie to conduct
the calculation.

As predicted, the mean convergence rate of these higher
order methods is the same as that of the first-order method.
In this case, there would be no point in using a higher order
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FIG. 13. Extrapolated residuals with curve fit for the second-order
extrapolation, -
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FIG. 14. Extrapolated residuals with curve fit for the ﬁ[th-o_rder
extrapolation. -

method that takes a toll in computation time and storage
with no improvement in convergence rate.

Questions may arise as to whether the VSE methods and
limitations given here are applicable for highly clustered
grids. The same calculations as above were done on
clustered grids where the normal to tangential grid spacing
ratios were 10:1, 500:1, and 5000:1. Normal grid spacings
increased geometrically away from the wail. Figure 15
shows the results for all three grids using first-order
extrapolation. All three have reached the A7 limit. It is safe
to conclude that these methods wilt work for some stretched
grids. However, not too much should be made of this test.
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FIG. 15. Effect of sevete grid stretching on extrapolating residuals.
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It is well known that the convergence rate (and 4,) for inter-
acting boundary layer methods are primarily functions of
how the outer flow solution is discretized. The convergence
rates are practically insensitive to the grid spacing in the
viscous layer. Thus, we should not be too surprised that the
extrapolated convergence rates also show this insensitivity.

A NONLINEAR EXTRAPOLATION METHOD

The essential problem with current vector sequence
extrapolation methods is that a linear model is used to
compute the accelerated values. Such models do not
correctly account for nonlinear behaviors, as seen above. Is
this limitation insuperable? In this section, we hope to
demonstrate otherwise. It appears that a relatively simple
extension of the methods described above vields a means to
circumvent the limitations seen in the linear form. The
following method is presented to demonstrate that non-
linear vector sequences can be accelerated by more than
30 % if the nonlinear nature of the sequence is retained. The
method is not being presented as a final solution to the
problem. Many questions concerning numerical sensitivity
and methodology remain.

To begin, we examine the convergence behavior of a
scalar, nonlinear system: the logistic map. This system is
defined to be

xH = G (] — xtrhy, (45}
In this case, we choose 4 =0.999. This particular form where
A is less than unity is convergent to zero. The asymptotic
convergence rate is easily seen to be just i Figure 16
illustrates the convergence behavior of this system. After a
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FIG. 16. Residuals of the logistic map.
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smooth transient, the mapping residual takes on a log-linear
form similar to that seen in Fig. 1. An analogous linear
scalar mapping would not display this transient behavior.
An understanding of why these systems resemble their high
dimension linear counterparts in convergence mode leads to
an alterpative method of extrapolation that eliminates the
A7 limit seen so far.

To see how this behavior can be explained, we consider
the Taylor series expansion of a general nonlinear mapping
of the form given in (2):

x(n+i)=b‘+a”x(")+a12(x(”])2+ (46)
This mapping then can be considered linear in terms of
x, x%, x*, ... I the solution variable at iteration level n + 1 is
augmented by the algebraic process of raising to integral
powers, the mapping can be represented as

(XU 2= by + g x7 + ayy(x )

(x"'“))3=b3+a31x‘"’+a32(x‘”’)2+

. {47)
(x(n+1))m=bm +a,,,1x("’+ amz(x[n)):! + ..
In general, we can say
y{_"+”=b,+Ajjyj‘."’, (48)

where y,=x' (Note. x'is the ith power of x) and the
indices are countably infinite. A similar expansion can be
done for nonlinear mappings of finite dimension.

This treatment underscores the basic difference between
linear and nonlinear systems of finite dimension, Whereas
linear systems of dimension N can have at most N distinct
eigenvalues, nonlinear systems of the same dimension
potentially have a countably infinite set of eigenvalues. The
existence of these additional eigenvalues explains the
transient behavior seen in Fig. 16.

With only one solution variable, only first-order
extrapolation is allowable if we confine ourselves to linear
terms only. This extrapolation will be mathematically
equivalent to Aitken’s method [1] regardless of the algo-
rithm used. The theory thus far developed predicts that the
convergence of this residual will go like 2%, Figure 17 shows
that this is indeed the case.

The arguments used to explain the transient behavior in
the base sequence can now be used to develop an extrapola-
tion technique that takes better account of the nonlinearity.
In applying a first-order extrapolation, we ar¢c assuming
that the sequence penerator is approximated by the
mapping

XD = K K x ), (49)
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FIG. 17. Residuals of the logistic map from linear and nonlinear
extrapolation.

We could also develop a kth order extrapoiation that
assumes

Y =b,t Ay (50)

i

with 7, j=1,k, by assuming that the residuals, w,=
{x Y — (x*y, of the y vector converge in the same way
as their linear counterparts. We can predict the limit of this
sequence in much the same way as for linear cases. In
particular, we will assume that if we write the residual
sequence in the form

COWEHJ +¢, wgn+ 1} + - 4 CkH‘E'H'k) - _ H;[H-I'k + 1],

(51)

we can predict the limit of the first component of the y
vector (x itsell ) by

1) =y, (52)
where the weighting coefficients are defined as
.
y,=—t (53)
ol

with ¢, ,,=1. This is essentially the form assumed for
MPE. The main difference is that the number of com-
ponents of the residuals of y, can be selected to be the same
as the order of the fit, resulting in a system that is not over-
determined, as is the case for MPE. Thus, simple matrix
inversion is sufficient to find the weighting coefficients for
the extrapolated value of x.
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Using a second-order version of this method, where the
residuals of x and x? are used to find the weighting coel-
ficients, we see that the accelerated sequence converges at a
much faster rate than the previous A7 limitation would
allow. In fact, for this scalar case, the asymptotic con-
vergence rate appears to go like 4° (Fig. 17). The implica-
tion is that wile using this method will result in significant
savings over linear-based methods, it may not be desirable
to implement much higher order extrapolations. 1f the
accelerated convergence rate goes like A%, we would quickly
reach a point where incremental increases in k& would not
result in very substantial increases in convergence rate.

We have scen that the method described above can
accelerate a nonlinear scalar sequence at more than twice
the convergence rate of the base sequence. We will now
show that the method, with suitable modification, can
accelerate a nonlinear vector sequence with similar savings.
We again consider the nonlinear mapping to be a linear
mapping of infinite dimension (Eq. (48)). However, now the
vector y includes not only terms like x{* but also products of
powers of the terms in the solution vector. If it is necessary
to include all such terms in a nonlinear vector sequence
extrapolation method, the size of the problem will almost
immediately become prohibitive. To circumvent this growth
in size, we will assume that we can extrapolate an individual
component of the solution vector using only the residuals of
that component and its powers. This is similar to using
Aitken’s method for a linear system (treating each selution
vector component as a scalar variable), even though it is
known that the components are generated in a coupled
fashion. It is also akin to Jespersen and Bunning's [8] use
of projections of the full vector to find dominant eigenvalues
for linear systems.

With these assumptions, it is possible to apply the same
method as used for the scalar problem separately for each
component of a vector sequence. This was done for the
Burgers® equation problem discussed earlier. Due to the
very slow convergence of the original problem, the equation
with the same boundary conditions as before was solved on
a 26-point grid. Figure 18 shows the residual of the base
sequence at the center point of the grid. Figure 19 shows the
residuals again at the center point using standard MPE
and the nonlinear method described above, Nomlinear
extrapolations were second order (residuals of v and v were
used to find weighting coefficients for »). Again, we see
that the linear extrapolation shows a 50% savings in
convergence rate, while the nonlinear method shows
substantially better savings. Numerical sensitivity problems
ensued rather early in the nonlinear calculation but not
before the limit was essentially reached.

No great effort was made to improve the numerical
properties of this method, the objective being primarily to
demonstrate that the limitation of linear-based methods can
be overcome through the consideration of the true non-
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FIG. 18. Residuals of Burgers' equation soJution on a 26-point grid.

linear nature of the vector sequence generator. It is worth
noting that both the nonlinear and linear extrapolations
show savings in CPU time as compared to the base
algorithm. (See Fig. 20.) For this model problem, this is not
surprising since the extrapolations in both cases represent
less than 10% of the total computational effort. In realistic
problems, it is possible that the acceleration techniques may
take as much time per iteration as the base algorithm. In
this case, no real savings (and sometimes even penalties) in
CPU time will be realized. The solution in such situations
is to apply the acceleration infrequently. The mean
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FIG. 19. Residuals of the 26-point grid Burgers’ equation using linear
and nonlinear extrapofation.
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FIG. 20. CPU time histories for the linear and nonlinear extra-
polations of the 26-point Burgers’ equation solution.

convergence rate is relatively unaffected by applying the
acceleration scheme every 10-20 iterations as opposed to
applying at the end of each global iteration.

CONCLUSION

We have seen that fundamental limitations exist in the use
of linear-based extrapolation methods applied to nonlinear
systems. In particular, it seems that while convergence rates
of the extrapolated sequences are limited only by numerical
accuracy for linear systems, they will be limited to twice the
base convergence rate for most nonlinear systems of
interest. In itself, this does not make such methods useless;
50% savings in run times are, after all, quite significant.

The dependence of the extrapolated convergence rate on
the convergence rate of the base algorithms highlights the
necessity of continuing to improve the base numerical
methods used in the solution of nonlinear problems (ie.,
decrease 4,). This dependence on 4, is present in both the
linear models used thus far and in the suggested nonlinear
alternative method. At this time, it wouid appear that only
through improved understanding of nonlinear systems can
the performance of such systems be improved by orders of
magnitude.

Continued development of the nonlinear extrapolation
technique will hinge on questions of the importance of
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coupling of variables in nonlinear systems. If it appears that
for some nonlinear systems, individual variables can be
treated as scalars, a method similar to that described above
can be applied without modification. Still, many problems
concerning the best numerical way to solve such systems
must be resolved. If, on the other hand, the entire solution
vector must be considered, the rapid growth in the size
of the problem would probably make such methods
impractical.
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